ক্যাপাসিটর

ভূমিকা:

বরাবরের মতো আজ একটি বৈদ্যূতিক ডিভাইস নিয়ে আলোচনা করব। আজকের ডিভাইস ক্যাপাসিটর। সাধারণতঃ বিজ্ঞান ও প্রযুক্তি প্রসঙ্গে লেখার ব্যপারে অধিক আগ্রহ প্রকাশ করি, আর তা যদি হয় ইলেকট্রনিক বিষয়ে তাহলে আগ্রহটা আরো বেড়ে যায়। এই পোষ্টটি থেকে তারাই বেশি উপকৃত হতে পারবে যারা ইলেকট্রনিক্সের নবীন শিক্ষার্থী এবং প্রজেক্ট তৈরীর নেশা রয়েছে। চেষ্টা করছি সব দিক বিবেচনা করে একটি পূর্ণঙ্গ তথ্য সমৃদ্ধ পোস্ট লিখবার, তবু শব্দ, বাক্য ও তথ্যের উপস্থাপনায় থাকবে কিছু অপূর্ণতা, কিছু ঘাটতি, সেটুকু না হয় আপনারা পূর্ণ করে দিবেন। পোস্টের আয়তন যথাসম্ভব সংক্ষিপ্ত করার জন্য বর্ণনা শব্দবহুল না করে সংক্ষিপ্ত আকারের বিবৃতি উপস্থাপনে সচেষ্ট হলাম।

পরিচয়:

দুটি পরিবাহী প্লেটের মাঝে অপরিবাহী পদার্থ (Dielectric) রেখে প্লেট দ্বয়কে পৃথক করলে যে ডিভাইস তৈরী হয় তাকে ক্যাপাসিটর বলে। ক্যাপাসিটর একটি বৈদ্যূতিক প্যসিভ ডিভাইস যা চার্জ সংরক্ষণ করতে পারে এজন্য অতীত দিনগুলিতে এই ডিভাইসকে ইলেকট্রিক্যাল কন্ডেনসার বলা হতো। বাংলা ভাষায় একে ধারক নামে অভিহিত করা হয়।

ক্যাপাসিটর ও ক্যাপাসিট্যান্স:

ক্যাপাসিটর হলো ডিভাইস বা সার্কিটের উপাদান এবং ক্যাপাসিট্যান্স হলো উক্ত ডিভাইসের বৈশিষ্ট বা গুণ, কোন ক্যাপাসিটরের ডাই-ইলেকট্রিক পদার্থের চার্জ ধারণ করার সামর্থ্যকে ক্যাপাসিট্যান্স বলা হয়। যে ক্যাপাসিটরের চার্জ ধারণ ক্ষমতা বেশী তার ক্যাপাসিট্যান্স বেশী এবং চার্জ ধারণ ক্ষমতা কম হলে ক্যাপাসিট্যান্স কম।

প্রতীক:

বিভিন্ন ইলেকট্রনিক স্ক্যামিটিক ডায়াগ্রামে ক্যাপাসিটরকে প্রকাশ করার জন্য বিভিন্ন সিম্বল বা প্রতীক ব্যবহার করা হয়। তা নিম্নে দেখানো হলোঃ

ক্যাপাসিটরপ্রতীক
স্থির মানের পোলার ক্যাপাসিটর
স্থির মানের নন পোলার ক্যাপাসিটর
পরিবর্তনশীল মানের ক্যাপাসিটর

দুটি সমান্তরাল প্লেটের দুই পার্শ্বে দুটি টার্মিনাল যোগ করে ক্যাপাসিটরকে প্রকাশ করা হয়। ক্যাপাসিটরটি পোলার হলে প্লেটের পার্শ্বে (+) অথবা (-) চিহ্ন ব্যবহার করে উক্ত প্লেটের পোলারিটি প্রকাশ করা হয় অথবা একটি প্লেটকে বাঁকা করে আঁকা হয়। বাঁকা প্লেটটি নেগেটিভ টার্মিনালকে প্রকাশ করে। ক্যাপাসিটরটি পরিবর্তনশীল মানের হলে প্লেটদ্বয়ের উপর একটি তীর চিহ্ন সম্বলিত রেখা একে তা প্রকাশ করা হয়।

একক:

বর্তমানে ক্যাপাসিট্যান্সের এসআই একক ফ্যারাড (Farad), একে ইংরেজী F অক্ষর দ্বারা প্রকাশ করা হয়। কিন্তু ফ্যারাড একটি বৃহৎ একক ফলে ব্যবহারিক ক্ষেত্রে মাইক্রোফ্যারাড μF এবং পিকোফ্যারাড pF রেঞ্জের একক ব্যবহার করা হয়। নিম্নে বহুল ব্যবহৃত একক গুলির মধ্যে সম্পর্ক দেখানো হলোঃ

ফ্যারাডমাইক্রোফ্যারাডন্যানোফ্যারাডপিকোফ্যারাড
1F1000000μF1000000000nF1000000000000pF
\(1\times10^{-6}F\)1μF100nF1000000pF
\(1\times10^{-9}F\)0.001μF1nF1000pF
\(1\times10^{-12}F\)0.000001μF0.001nF1pF

১ ফ্যারাড বলতে কি বুঝায়?

কোন ক্যাপাসিটরের ক্যাপাসিট্যান্স ১ ফ্যারাড বলতে বুঝায় ঐ ক্যাপাসিটরের আড়াআড়িতে ১ ভোল্ট বিভব পার্থক্যের পরিবর্তনে উক্ত ক্যাপাসিটরে সঞ্চিত চার্জের পরিবর্তন ১ কুলম্ব হয়ে থাকে।

অর্থাৎ কোন চার্জ বিহীন ক্যাপাসিটরের আড়াআড়িতে ১ ভোল্ট বিভব পার্থক্য প্রয়োগ করলে ক্যাপাসিটরটি যদি ১ কুলম্ব চার্জ সংরক্ষণ করতে পারে তবে উক্ত ক্যাপাসিটরের ধারণক্ষমতাকে ১ ফ্যারাড বলা হয়।

অতীতে ক্যাপাসিট্যান্সের একক ছিল জার (Jar)। ১ জারের পরিমান ছিল ১ ন্যানোফ্যারাডের সমতুল্য। ১ জার = ১ ন্যানোফ্যারাড।

ইতিহাস ও ক্রমবিকাশ:

সময়টা ১১ অক্টোবর ১৭৪৫ খ্রীস্টাব্দ। জার্মানের পোমেরানিয়া শহরের (Pomerania) আইনবিদ/জুরি, খ্রীষ্ট ধর্মতত্ত্ববিদ ও পদার্থবিদ ইয়াল্ড জর্জ ভন ক্লেইস্ট (Ewald Georg von Kleist) একটি বিশেষ ধরণের জার বা পাত্র (Jar) উদ্ভাবন করেন যা ক্লেইস্টিন জার নামে সুপরিচিত। ভন ক্লেইস্ট প্রত্যক্ষ করেন যে হাতে ধারণকৃতঃ পানিপূর্ণ কাঁচের জারে ইলেকট্রোস্ট্যাটিক জেনারেটরের মাধ্যমে উচ্চ বিভব প্রয়োগ করে তাতে চার্জ সংরক্ষণ করা যায়। ক্লেইস্ট আরো প্রত্যক্ষ করেন যে জেনারেটরের সংযোগ বিচ্ছিন্ন করার পর কাঁচের জার সহ সংযোগকারী তারটি স্পর্শ করলে বৈদ্যূতিক শকের সৃষ্টি হয়। এই পরীক্ষা মাধ্যমে তিনি চার্জ সঞ্চয়ের বিষয়টি ব্যাখ্যা করেন।

একই বছর ইউনিভার্সিটি অব লেইডেনের একজন ডাচ পদার্থবিদ (Dutch physicist Pieter van Musschenbroek) একই ধরণের একটি জার উদ্ভাবন করেন যা লেইডেন জার নামে পরিচিত। লেইডেন জার প্রাথমিক সময়ে শুধুমাত্র পরীক্ষাগারে এক্সপেরিমেন্ট করতে ব্যবহৃত হতো এবং পরে কিছু বেতার যন্ত্রেও ব্যবহৃত হয়েছে।

ডেনিয়েল (Daniel Gralath) নামের একজন পোল্যান্ডের পদার্থবিদ সর্বপ্রথম এরূপ একাধিক জার সমবায় করতে সক্ষম হন যার মাধ্যমে উচ্চ ক্যাপাসিট্যান্স সৃষ্টি করা যায়। মার্কিন যুক্তরাষ্ট্রের বিখ্যাত পদার্থবিদ রাজনীতিবিদ বেঞ্জামিন ফ্রাংকলিন লেইডেনের জারটি পরীক্ষা নিরীক্ষার মাধ্যমে প্রমাণ করেন যে চার্জ সঞ্চিত হয় কাঁচের উপরিতলে মধ্যে পানিতে নয়, যদিও পূর্ববর্তী গবেষকদের ধারণা ছিল চার্জ সঞ্চিত হয় পানিতে। একারনে পরবর্তী যুগের লেইডেন জারগুলিতে পানির পরিবর্তে জারের ভেতর ও বাহিরে কন্ডাকটিভ কোটিং ব্যবহার করা হয়েছে। ১৭৮২ সালে বিজ্ঞানী ভোল্টা (Volta) লক্ষ করেন যে লেইডেন জারের মত ডিভাইসের মাধ্যমে অতি স্বল্প স্থানের মধ্যে অধিক চার্জ সঞ্চিত করা যায় এ কারনে তিনি এর নাম করন করেন কন্ডেনসার।

ফ্রাংকলিনের কিছু বছর পরেই ইংলিশ রসায়ণবিদ মাইকেল ফ্যারাডে তেলের ব্যারেল দ্বারা নির্মিত প্রথম ব্যবহারিক ক্যাপাসিটর উদ্ভাবন করেন এবং এর বৈশিষ্ট্য ব্যাখ্যা করেন। ১৮৬১ সালে একজন ইংলিশ ইলেকট্রিক্যাল ইঞ্জিনিয়ার ল্যাটিমার ক্লার্ক (Josiah Latimer Clark) ফ্যারাডের সম্মানার্থে ‘ফ্যারাড’ শব্দটিকে (Farad) ক্যাপাসিট্যান্সে একক হিসাবে প্রচলন করেন।

উনবিংশ শতাব্দীর শেষভাগে যখন থেকে বেতার প্রযুক্তির উন্নয়ন শুরু হয় তখন উন্নত প্রযুক্তির চাহিদানুযায়ী কাঁচ নির্মিত ক্যাপাসিটরের পরিবর্তে মেটাল ফয়েল কন্ডাকটর নির্মিত ক্যাপাসিটরের বাণিজ্যিক ব্যবহার শুরু হয়। এ সময় ১৮৮৬ সালে চার্লস পুলক (Charles Pollak) নামে একজন গবেষক এনোডাইজিং (Anodizing Technique) কৌশল বিষয়ে গবেষণা করার সময় সর্বপ্রথম ইলেকট্রোলাইটিক ক্যাপাসিটরের মূলনীতি উদ্ভাবন করেন। তিনি লক্ষ করেন যে পাতলা এলুমিনিয়াম অক্সাইডের প্লেট ও ইলেকট্রোলাইট দ্রবণের মধ্যে উচ্চ মাত্রার ক্যাপাসিট্যান্স সৃষ্টি হয়। পরবর্তীতে ১৯২৬-১৯৩১ সালের মধ্যে অস্ট্রো-হাংগেরিয়ান (Austria-Hungary) পদার্থবিদ জুলিয়াস এডগার লিলিয়েনফিল্ড (J. E. Lilienfeld) ইলেকট্রোইটিক ক্যাপাসিটরের উপর গবেষণা করে আধুনিক রূপের ইলেকট্রোলাইটিক ক্যাপাসিটরের পেটেন্ট উদ্ভাবন করেন। দ্বিতীয় বিশ্বযুদ্ধ পরবর্তী সময়ে ইলেকট্রোলাইটিক ক্যাপাসিটর সমূহের অনেক সীমাবদ্ধতা কাটিয়ে আরো ত্রুটিমুক্ত এবং উন্নত করা হয়। বর্তমান যুগে বিভিন্ন ম্যানুফ্যাকচারিং কোম্পানীগুলি আধুনিক যুগর চাহিদা পূরণের নিমিত্ত নিজ নিজ গবেষণা ও প্রযুক্তি ব্যবহার করে দিন দিন উন্নত যুগোপযোগী ক্যাপাসিটিভ ডিভাইস তৈরী করছে। বর্তমান বিশ্বে একটি বিখ্যাত ক্যাপাসিটর নির্মাতা প্রতিষ্ঠান ‘ইলিনইজ ক্যাপাসিটর (Illinois Capacitor, inc)’ ১৯৩৫ সাল হতে তাদের গবেষণা দ্বারা যুগের চাহিদানুযায়ী বিভিন্ন ধরনের ক্যাপাসিটর উৎপাদন করে চলেছে। তাদের উৎপাদিত ক্যাপাসিটরের উল্লেখযোগ্য বিবর্তন দেখানো হলোঃ

১৯৩৪-কোম্পানী প্রতিষ্ঠা লাভ করে ইলিনয়েজ কন্ডেনসার কোম্পানী নামে। (Illinois Condenser Company)
১৯৩৫-সিকাগোতে প্রথম ফ্যাক্টরী স্থাপন।
১৯৪৮-ইচড্ ফয়েল প্রযুক্তিতে ক্যাপাসিটর উৎপাদন শুরু।
১৯৫০-শুষ্ক ইলেট্রোলাইটিক ক্যাপাসিটরের পেটেন্ট তৈরী।
১৯৬১-বহু টার্মিনাল বিশিষ্ট ক্যাপাসিটরের পেটেন্ট গ্রহন
১৯৬৩-ক্ষুদ্রাকৃতি ইলেকট্রোলাইটিক ক্যাপাসিটরের পেটেন্ট তৈরী।
১৯৬৯-কোম্পানীটি তার নাম পরিবর্তন করে Illinois Capacitor, Inc. নামে পরিচিতি লাভ করে।
১৯৯৭-সারফেস মাউন্ট ক্যাপাসিটর (চীপ ক্যাপাসিটর) তৈরী শুরু
২০০৬-পলিমার ক্যাপাসিটর তৈরী শুরু
২০০৭-সুপার ক্যাপাসিটর তৈরী শুরু
২০১১-MPP metalized polypropylene radial lead capacitors উৎপাদন।

প্রাচীন যুগের পরীক্ষাগারে ব্যবহৃত কিছু লেইডেন জার:

মূলনীতি ও কার্যপ্রণালী:

ডাইইলেকট্রিক পদার্থগুলির আড়াআড়িতে ভোল্টেজ প্রয়োগ করলে এর মধ্য দিয়ে কারেন্ট প্রবাহ ঘটে না কিন্তু ক্যাপাসিটরের প্লেট চার্জ ধারণ করতে পারে।

[চিত্র-ক] তে একটি ব্যাটারীর সাথে ক্যাপাসিটর এবং সুইচ যুক্ত করে বর্তনী তৈরী করা হয়েছে। সুইচ ওপেন অবস্থায় ক্যাপাসিটরটি চার্জ বিহীন অবস্থায় থাকে। আমরা জানি, ব্যাটারী হচ্ছে ইলেকট্রোমটিভ ফোর্সের উৎস। যখন কোন ক্যাপাসিটরকে একটি ডিসি সরবরাহের সাথে যুক্ত করা হয় [চিত্র-খ] এর মত তখন ইলেকট্রোমটিভ ফোর্সের কারণে ব্যাটারীর নেগেটিভ টার্মিনাল হতে ইলেকট্রনসমূহ সংযোগ তারের মাধ্যমে ক্যাপাসিটরের B প্লেটে এসে জমা হয় এবং একই সময়ে সমপরিমান ইলেকট্রন A প্লেট হতে সংযোগ তারের মাধ্যমে ব্যাটারীর পজেটিভ টার্মিনালের দিকে আকৃষ্ট হয়। ফলে ক্যাপাসিটরের B প্লেটে ইলেকট্রনের আধিক্য ও A প্লেটে প্রোটনের আধিক্য দেখা দেয়, কিন্তু কোন অবস্থাতেই ক্যাপাসিটরের ডাইইলেকট্রিক পদার্থের মধ্য দিয়ে কারেন্ট প্রবাহ হয় না। এখানে B প্লেটে ইলেকট্রনের আধিক্যের কারনে স্থির নেগেটিভ চার্জ ও A প্লেটে ইলেকট্রনের ঘাটতির কারনে স্থির পজেটিভ চর্জের সৃষ্টি হয়। এই অবস্থা চলতে থাকে ততক্ষন যতক্ষণ না ক্যাপাসিটরের চার্জিত ভোল্টেজ সরবরাহ ভোল্টেজের সমান হয়। ব্যাটারী সংযুক্ত অবস্থায় এভাবে চার্জ সঞ্চিত হয়।

আমরা জানি বিতরীতধর্মী চার্জসমূহ পরস্পর আকর্ষিত হয়। ক্যাপাসিটরের A এবং B প্লেটে অবস্থিত বিপরীরধর্মী চার্জের ইলেকট্রোস্ট্যাটিক ফিল্ডের মধ্যেও এই আকর্ষণ বল ক্রিয়া করে। এই আকর্ষণ বলকে [চিত্র-খ] তীর চিহিৃত রেখা দ্বারা দেখানো হয়েছে যা ডাইইলেকট্রিক পদার্থের মধ্য দিয়ে প্রবাহিত হয়। এই আকর্ষণ বল ইলেকট্রনসমূহকে প্লেটের সারফেসে আবদ্ধ থাকতে সাহায্য করে কিন্তু ডাইইলেকট্রিক পদার্থের মধ্য দিয়ে প্রবাহিত করতে পারেনা কারন ডাইলেকট্রিক পদার্থ অপরিবাহী। এখন যদি ব্যাটারীকে ক্যাপাসিটর হতে বিচ্ছিন্ন করি [চিত্র-গ] এর মত তবুও চার্জসমূহ আর ব্যাটারীতে ফেরত যাবেনা। এই অবস্থাকে বলা হয় চার্জিত অবস্থা এবং এই অবস্থায় ক্যাপাসিটরের দুই প্রান্তে ব্যাটারী ভোল্টেজের সমান ভোল্টেজ পাওয়া যাবে। এখন একটি পরিবাহী তার দ্বারা ক্যাপাসিটরের টার্মিনাল দুটি শর্ট করলে সঞ্চিত চার্জগুলি তারের মাধ্যমে প্রবাহিত হয়ে চার্জ নিঃশেষ হবে কারন পরিবাহী পথটি অধিক সুগামী।

যখন কোন ক্যাপাসিটরে এসি ভোল্টেজ প্রয়োগ করা হয় তখন প্রথম হাফ সাইকেলে যে পোলারিটিতে চার্জ হয় দ্বিতীয় হাফ সাইকেলে তা সম্পূর্ণ ডিসচার্জ হয়ে পূনরায় বিপরীত পোলারিটিতে চার্জ হয়, এবং প্রতিবার চার্জ হওয়ার জন্য ক্যাপাসিটর চার্জিং কারেন্ট গ্রহন করে এবং ডিসচার্জ হওয়ার সময় ডিসচার্জিং কারেন্ট প্রদান করে। এভাবে চার্জিং ও ডিসচার্জিং প্রক্রিয়ায় একটি ক্যাপাসিটর এসি প্রবাহ ঘটিয়ে থাকে, কিন্তু কোন ক্রমেই ডাইইলেকট্রিকের মধ্য দিয়ে কারেন্ট প্রবাহিত হয় না।

ক্যাপাসিট্যান্স কি কি বিষয়ের উপর নির্ভরশীল?

ডাইইলেকট্রিকের প্রয়োজন কি? হ্যাঁ প্রয়োজন আছে। ডাইইলেকট্রিক পদার্থসমূহ বৈদ্যূতিক বলরেখাসমূহের প্রবল্যকে নিয়ন্ত্রণ করে। বলরেখাসমূহ বায়ু অপেক্ষা যে কোন কঠিন ডাইলেকট্রিক পদার্থের মধ্য দিয়ে সহজেই প্রবাহিত হতে পারে, কারন কঠিন ডাইইলেকট্রিকের ভেদন যোগ্যতা বায়ু অপেক্ষা বেশী। উচ্চ ভেদন যোগ্যতা সম্পন্ন ডাইইলেকট্রিক ব্যবহার করলে বলরেখার বাধা কম হবে প্রবল্য বেশী হবে। বলরেখার প্রাবল্য বেশী হলে দুই প্লেটে অবস্থিত চার্জের মধ্যে আকর্ষন বল বেশী হবে, আর আকর্ষণ বল বেশী হলে প্লেটে বেশী পরিমান চার্জ সঞ্চয় হবে বা ক্যাপাসিট্যান্স বেশী হবে।

আবার ক্যাপাসিটরের প্লেটের ক্ষেত্রফল বেশী হলে অধিক স্থান জুড়ে বলরেখা আবিষ্ট হয় এবং প্রবল্য বেশী হয় ফলে ক্যাপাসিট্যান্স বেশী হয় এবং ক্ষেত্রফল কম হলে ক্যাপাসিট্যান্স কম হয়। উপরোক্ত প্রভাবকগুলির উপর ভিত্তি করে নিম্নে সূত্র প্রতিপাদিত হয়েছে। ক্যাপাসিট্যান্সকে নিচের সূত্রের মাধ্যমে প্রকাশ করা হয়ঃ

C=rAd ......................... (১)

এখানে C = ক্যাপাসিট্যান্স, \(\in_r\) = ডাইলেকট্রিকের ভেদন যোগ্যতা, A = প্লেটের ক্ষেত্রফল, d = প্লেটদ্বয়ের দূরত্ব।

ক্যাপাসিটরের বাধা:

ক্যাপাসিটরের বাধাকে ইংরেজীতে ক্যাপাসিটিভ রিয়্যাকট্যান্স বলা হয় (Capacitive Reactance)। ক্যাপাসিটর রেজিস্টিভ উপাদান নয় তাই এর বাধাকে রেজিস্ট্যান্স বলা হয় না। ক্যাপাসিটিভ রিয়াকট্যান্সকে ওহম (ohm) এককে প্রকাশ করা হয়। ক্যাপাসিটর এসি প্রবাহকে এর কম্পাংক অনুযায়ী বাধা দেয় এবং ডিসি প্রবাহকে পুরোপুরি বাধা দেয়। ক্যাপাসিটরের বাধা নিম্নের সূত্রের মাধ্যমে প্রকাশিত হয় –

X C = 1 2 π fC ......................... (২)

এখানে, \(X_C\) = ক্যাপাসিটিভ রিয়াকট্যান্স বা ক্যাপাসিটরের বাধা, \(f\) = প্রযুক্ত ভোল্টেজের কম্পাংক, C = ক্যাপাসিটরের ক্যাপাসিট্যান্স।

এই সম্পর্ক হতে বুঝা যায় যে, প্রযুক্ত ভোল্টেজের কম্পাংক যত বেশী হবে ক্যাপাসিটরের বাধা তত কম হবে, কম্পাংক কম হলে বাধা বেশী হবে এবং কম্পাংক শূন্য অর্থাত ডিসি হলে বাধা হবে অসীম।

সঞ্চিত চার্জের পরিমান:

কোন ক্যাপাসিটরে সঞ্চিত চার্জের পরিমান দুটি বিষয়ের উপর নির্ভর করে, যেমন (১) প্রযুক্ত ভোল্টেজ এবং (২) ক্যাপাসিট্যান্স। এবং এই সঞ্চিত চার্জকে নিম্নের সূত্রের মাধ্যমে প্রকাশ করা হয়-

Q = CV ......................... (৩)

এখানে Q = সঞ্চিত চার্জের পরিমান, C= ক্যাপাসিটরের ক্যাপাসিট্যান্স এবং V= ক্যাপাসিটরে প্রযুক্ত ভোল্টেজ। এই সম্পর্ক হতে সহজেই বুঝা যায়, একই মানের ক্যাপাসিটরের ক্ষেত্রে প্রযুক্ত ভোল্টেজ বাড়ালে সঞ্চিত চার্জের পরিমান বাড়বে এবং ভোল্টেজ কমালে চার্জের পরিমান কমবে। আরো বুঝা যায় প্রযুক্ত ভোল্টেজ স্থির রেখে ক্যাপাসিট্যান্স বাড়ালে চার্জের পরিমান বাড়বে এবং ক্যাপাসিট্যান্স কমালে চার্জও কমবে।

ক্যাপাসিটরের ভোল্টেজ রেটিং কি?

একটি ক্যাপাসিটরে সর্বোচ্চ যে ডিসি ভোল্টেজ প্রয়োগ করা যায় তাকে ক্যাপাসিটরের ভোল্টেজ রেটিং বলে। আমরা জানি ক্যাপাসিটরসমূহ ডাইইলেকট্রিক পদার্থ দ্বারা তৈরী। এই ডাইইলেকট্রিক পদার্থসমূহের আড়াআড়িতে প্রযুক্ত ভোল্টেজ বাড়াতে থাকলে একটি নির্দিষ্ট ভোল্টেজে পৌছালে ডাইইলেকট্রিক তার ইনসুলেটিং ধর্ম হারিয়ে কারেন্ট প্রবাহ শুরু করে। অনুরূপ ক্যাপাসিটরে যথেচ্ছা অধিক ভোল্টেজ প্রয়োগ করলে ডাইইলেকট্রিক শর্ট হয়ে ক্যাপাসিটর নষ্ট হবার আশংকা রয়েছে। তাই ক্যাপাসিটরে একটি নির্দিষ্ট সর্বোচ্চ ভোল্টেজ প্রয়োগ করা হয় যাতে ডাইইলেকট্রিকের কোন ক্ষতি হয় না এবং ক্যাপাসিটর অধিক দীর্ঘস্থায়ী হয়। এই ভোল্টেজ মানকে ক্যাপাসিটরের ভোল্টেজ রেটিং বলা হয়। ইহাকে ক্যাপাসিটরের গায়ে লেখা থাকে। ক্যাপাসিটরকে তার রেটেড ভোল্টেজের চেয়ে বেশী ভোল্ট প্রয়োগ করা যায় না কিন্তু কম ভোল্ট প্রয়োগ করলেও সঠিক ক্যাপাসিট্যান্স পাওয়া যায় ও সঠিক ভাবে কাজ করে। ক্যাপাসিটরের ক্যাপাসিট্যান্স ভোল্টেজ রেটিং এর উপর নির্ভর করেনা।

কিছু সাধারণ বৈশিষ্ট্য:

  1. ক্যাপাসিটর এসি কারেন্টকে শর্ট করে এবং ডিসি কারেন্টকে ব্লক করে। অর্থাত ক্যাপাসিটরের মধ্য দিয়ে এসি কারেন্ট প্রবাহিত হয় কিন্তু ডিসি প্রবাহিত হয়না।
  2. ইহা বৈদ্যূতিক চার্জকে ধারণ করতে পারে।
  3. ইহা প্যাসিভ ডিভাইস অর্থাত এর গেইন সৃস্টির ক্ষমতা নেই।
  4. চার্জ সর্বদা ক্যাপাসিটরের প্লেটদ্বয়ে সঞ্চয় হয়।
  5. ক্যাপাসিটরের মধ্য দিয়ে চার্জিং এবং ডিসচার্জিং প্রক্রিয়ার মাধ্যমে এসি (AC) কারেন্ট প্রবাহিত হয়, কখনোই ডাইইলেকট্রিক পদার্থের মধ্য দিয়ে কারেন্ট প্রবাহিত হয় না।

প্রকারভেদ:

মানের উপর ভিত্তি করে দুই ধরনের:

  1. স্থির মানের ক্যাপাসিটর
  2. পরিবর্তনশীল মানের ক্যাপাসিটর

পোলারিটির উপর ভিত্তি করে দুই ধরনের:

  1. পোলার ক্যাপাসিটর
  2. নন পোলার ক্যাপাসিটর

ব্যবহৃত উপাদানের উপর ভিত্তি করে কয়েক ধরনের হয়:

  1. ইলেকট্রোলাইটিক
  2. ডিস্ক সিরামিক
  3. মাইলার
  4. মাইকা
  5. পেপার ক্যাপাসিটর/মেটাল ফয়েল ক্যাপাসিটর
  6. সারফের মাউন্ট/চীপ ক্যাপাসিটর
  7. ট্যানটালাম ক্যাপাসিটর

সহজে বুঝার জন্য নিচের ছকটি লক্ষ করি-

ক্যাপাসিটর
স্থির মানেরপরিবর্তনশীল মানের
পোলারনন পোলারপোলারনন পোলার
ইলেকট্রোলাইটিকমাইকাএয়ার ক্যাপাসিটর
পেপার
সিরামিক
ট্যান্টালামমাইলার
সারফেস মাউন্ট

বিভিন্ন ক্যাপাসিটরের গঠন:

বিভিন্ন ক্যাপাসিটরের গঠন বিভিন্ন রকম। গঠন ভেদে এর বৈশিষ্ট্যের পরিবর্তন হয়। আসুন জানার চেষ্টা করি কোন ক্যাপাসিটরের আভ্যন্তরীণ গঠন কি রকম।

মাইকা ক্যাপাসিটর:

টিন ফয়েল প্লেটের মাঝখানে ডাইইলেকট্রিক হিসাবে পাতলা মাইকা শীট রেখে এই ধরনের ক্যাপাসিটর তৈরী করা হয়। এক সেট মেটাল ফয়েলকে সংযোগ করে একটি টার্মিনাল বের করা হয় এবং অন্য আরেক সেট মেটাল ফয়েলকে যুক্ত করে আরেকটি টার্মিনাল বের করা হয় যা চিত্রে দেখানো হয়েছে।

এরপর পুরো সিস্টেমটি একটি প্লাস্টিক কভারের মধ্যে স্থাপন করা হয়। মাইকা ক্যাপাসিটর সাধারণতঃ কম ক্যাপাসিট্যান্সে জন্য ১০ থেকে ৫০০ পিকোফ্যারাড রেঞ্জের জন্য তৈরী ও ব্যবহার করা হয়।

পেপার ক্যাপাসিটর:

এই ধরণের ক্যাপাসিটরে ডাইইলেকট্রিক হিসাবে কাগজ ব্যবহার করা হয়, এবং প্লেট হিসাবে টিন ফয়েল ব্যবহার হয়। কয়েক স্তর কাগজ ও টিনফয়েল পাশাপাশি রেখে প্যাঁচানো হয় এবং সিলিন্ডার আকৃতি কম্প্যাক্ট রোল সৃস্টি করা হয়, যা চিত্রে দেখানো হয়েছে। টিন ফয়েলের সাথে ধাতব তার যুক্ত করে টার্মিনাল বের করা হয়।

পুরো সিস্টেমটি একটি প্লাস্টিক কন্টেইনারে ভর্তি করা হয় এবং গায়ে মান লিপিবদ্ধ করা হয়। এই ধরনের ক্যাপাসিটরে মধ্যম মানের ক্যাপাসিট্যান্স পাওয়া যায় (প্রায় ০.০০১ থেকে ১.০ মাইক্রোফ্যারাড পর্যন্ত)।

সিরামিক ক্যাপাসিটর:

[চিত্র খ] তে আভ্যন্তরীন গঠন দেখানো হয়েছে এবং [চিত্র ক] তে বাহ্যিক রূপ দেখানো হয়েছে। এই ধরনের ক্যাপাসিটরে পোড়া মাটি অথবা টাইটেনিয়াম ডাইঅক্সাইড অথবা কিছু কিছু সিলিকেট যৌগ ডাইইলেকট্রিক হিসাবে ব্যবহার করা হয়। ক্যাপাসিটরের ধাতব প্লেট হিসাবে সাধারণতঃ সিলভার ব্যবহার করা হয়।

সিলভার ডিস্কের সাথে ধাতব টার্মিনাল যুক্ত করে সংযোগ বের করা হয়। প্লেট ও ডাইইলেকট্রিককে অপরিবাহী আবরণে ঢেকে দেয়া হয়। এই ধরণের ক্যাপাসিটর হতে নিম্ন মানের ক্যাপাসিট্যান্স সাধারণতঃ ১ পিকোফ্যারাড হতে ১ মাইক্রোফ্যারাড পর্যন্ত ক্যাপাসিট্যান্স পাওয়া যায়।

সারফেস মাউন্ট ক্যাপাসিটর:

এই ধরণের ক্যাপাসিটরকে অনেকে চীপ ক্যাপাসিটর বলে থাকে। এগুলি সাধারণতঃ কম্পিউটার মাদার বোর্ড সহ সূক্ষ ইলেকট্রনিক যন্ত্রপাতিতে ব্যবহার হয়। এদেরকে মাদারবোর্ডের সারফেসে কপার ট্রেসের সাথে সোল্ডারিং করে লাগানো হয়। চীপ রেজিস্টরের মত দেখতে চীপ ক্যাপাসিটরও আকারে প্রায় ০.১২৫ ইঞ্চি লম্বা এবং ০.০৬৩ ইঞ্চি প্রস্থ হয়ে থাকে।

চীপ ক্যাপাসিটরের অভ্যন্তরে মাল্টিলেয়ার কন্ডাকটিভ ফিল্ম ক্যাপাসিটরের প্লেট হিসাবে কাজ করে এবং প্লেটের ফাঁকে ফাঁকে সিরামিক পদার্থ ডাইইলেকট্রিক হিসাবে কাজ করে। এভাবে ক্যাপাসিটর গঠিত হয়। কিছু সংখ্যক কন্ডাকটিভ ফিল্ম হতে যুক্ত হয়ে কোন এক পাশের টার্মিনালের সাথে যুক্ত হয় এবং বাকী কন্ডাকটিভ ফিল্মগুলি একত্রে যুক্ত হয়ে অপর পাশের টার্মিনালের সাথে যুক্ত হয়। চীপ ক্যাপাসিটরগুলি সাধারণতঃ কয়েক পিকোফ্যারাড হতে কয়েক মাইক্রোফ্যারাড পর্যন্ত হয়ে থাকে।

ভেরিয়েবল ক্যাপাসিটর:

এই ধরণের ক্যাপাসিটরগুলিতে এক সেট স্থির ধাতব প্লেট থাকে যাদের স্টেটর বলা হয় এবং এক সেট মুভেবল ধাতব প্লেট থাকে যাদের রোটর প্লেট বলা হয়। এই রোটর প্লেটসমূহকে শ্যাফটের মাধ্যমে ঘুরানো যায়। যখন শ্যাফট ঘুরানো হয় তখন রোটর প্লেটসমূহ স্টেটর প্লেটসমূহের ফাঁকে ফাঁকে প্রবেশ করে এবং মাঝখানের বায়ু ডাইইলেকট্রিক হিসাবে কাজ করে, কিন্তু প্লেটগুলি পরস্পর স্পর্শ করে না। ক্যাপাসিটরের ক্যাপাসিট্যান্স নির্ভর করে রোটর প্লেট ও স্টেটর প্লেটের উপরিপাতিত ক্ষেত্রফলের উপর। শ্যাফট ঘুরালে রোটর প্লেট ও স্টেটর প্লেটের মধ্যে উপরিপাতিত ক্ষেত্রফলের পরিবর্তন হয় বলে ক্যাপাসিটরটি পরিবর্তনশীল ক্যাপাসিট্যান্স তৈরী করে।

এই ধরণের ক্যাপাসিটরের ক্যপাসিট্যান্স খুব কম হয়। রেডিও রিসিভারের (Gang) টিউনিং ক্যাপাসিটর এই ধরণের ক্যাপাসিটরের উত্তম উদাহরণ।

ইলেকট্রোলাইটিক ক্যাপাসিটর:

ইলেকট্রোলাইটিক ক্যাপাসিটরগুলিতে সাধারণতঃ স্বল্প স্থানে অধিক ক্যাপাসিট্যান্স তৈরী হয়। এর অভ্যন্তরে ব্যবহৃত ইলেকট্রোলাইটিক অধিক ক্যাপাসিট্যান্স সৃষ্টিতে সহায়ক। এই ধরণের ক্যাপাসিটরে এলুমিনিয়াম মেটাল ফয়েল ও পাতলা ফিল্ম ডাইইলেকট্রিক পরস্পর প্যাঁচিয়ে সিলিন্ডার আকৃতির রোল তৈরী করা হয়। পরে উক্ত রোলটি বোরাক্স ইলেকট্রোলাইটিকপূর্ণ এলুমিনিয়াম পাত্রে ভর্তি করা হয় এবং পাতলা মেটাল ফয়েল হতে দুটি টার্মিনাল বের করা

এই ধরণের ক্যাপাসিটরে পোলার ক্যাপাসিট্যান্স তৈরী হয় অর্থাৎ ইলেকট্রোলাইটিক ক্যাপাসিটরে ধণাত্বক ও ঋণাত্বক টার্মিনাল রয়েছে। সাধারণতঃ একটি নতুন ক্যাপাসিটরের লম্বা টার্মিনালটি ধণাত্বক টার্মিনাল হিসাবে কাজ করে। যদি ক্যাপাসিটরের উভয় টার্মিনাল সমান লম্বা হয় তাহলে এর গায়ে চিহ্নিত নেগেটিভ মার্কিং (যা চিত্রে দেখানে হয়েছে) দেখে নেগেটিভ টার্মিনাল চেনা যায়। নেগেটিভ চিহ্নিত পার্শ্ব হতে যে টার্মিনালটি খুব কাছে সেটিই হল নেগেটিভ টার্মিনাল। উল্লেখ্য যে ইলেকট্রোলাইটক ক্যাপাসিটর যে কোন সার্কিটে ব্যবহারের সময় সঠিক পোলারিটিতে লাগাতে হয় নতুবা ক্যাপাসিটর বিষ্ফোরণ হয়ে নষ্ট হয়ে যেতে পারে।

ট্যান্টালাম ক্যাপাসিটর:

এই ক্যাপাসিটরটি বিশেষ ধরণের ইলেকট্রোলাইটিক ক্যাপাসিটর যাতে এলুমিনিয়ামের (Al) পরিবর্তে ট্যানটালাম (Ta) এবং টাইটেনিয়াম (Ti) ধাতু ব্যবহার হয়। এই ক্যাপাসিটরগুলি দীর্ঘজীবি হয় এবং লিকেজ কারেন্ট খুব কম থাকে, সাইজে ছোট কিন্তু অধিক ক্যাপাসিট্যান্স তৈরী হয়।

ফিল্ম ক্যাপাসিটর:

ফিল্ম ক্যাপাসিটরের গঠন অনেকটা পেপার ক্যাপাসিটরের মত তবে এক্ষেত্রে ডাইইলেকট্রিক হিসেবে কাগজের পরিবর্তে (পলিপ্রোপাইলিন) প্লাস্টিক ফিল্ম ব্যবহার হয়। অনেকে একে মাইলার ক্যাপাসিটরও বলে থাকে। দুই ধরণের ফিল্ম ক্যাপাসিটর রয়েছে যেমনঃ ফয়েল টাইপ এবং মেটালাইজড টাইপ। ফয়েল টাইপ ক্যাপাসিটরে কন্ডাকটিভ প্লেট হিসাবে এলুমিনিয়াম অথবা টিনের মেটাল ফয়েল শীট ব্যবহার হয়। মেটালাইজড টাইপে প্লাস্টিক ফিল্মের উপর কন্ডাকটিভ প্লেট হিসাবে জিংক অথবা এলুমিনিয়ামের পাতলা স্তর সৃষ্টি করা হয়। কন্ডাকটিভ প্লেট সহ ফিল্ম পরস্পর জড়ানো থাকে। এর পর কন্ডাকটিভ প্লেট হতে টার্মিনাল বের করা হয় এবং ফিল্ম সহ প্লেটকে ইনসুলেটর কোটিং দ্বারা ঢেকে দেয়া হয়।

এরা খুবই টেম্পারেচার স্ট্যাবল এবং এই ধরনের ক্যাপাসিটরের ক্যাপাসিট্যান্স ১০০ পিকোফ্যারাড হতে ১০০ মাইক্রোফ্যারাড পর্যন্ত হয়ে থাকে।

মান লিপিবদ্ধ করার পদ্ধতি:

ইলেকট্রোলাইটিক ক্যাপাসিটরের মান সাধারণতঃ ক্যাপাসিটরের গায়ে মাইক্রোফ্যারাড কিংবা পিকোফ্যারাড রেঞ্জে লিখা থাকে। মাইলার এবং ডিস্ক সিরামিক ক্যাপাসিটরের মান ক্যাপাসিটরের গায়ে সরাসরি মাইক্রোফ্যারাড কিংবা পিকোফ্যারাড রেঞ্জে না লিখে কোডিং পদ্ধতিতে লিখা হয়। ইলেকট্রনিক ইন্ডাসট্রিজ এলিয়েন্স কর্তৃক নির্ধারিত এই কোডিং পদ্ধতি নিচে দেয়া হলোঃ

মাইলার ক্যাপাসিটরের কোড:

গুণকটলারেন্স
সংখ্যাগুণকের মানবর্ণ/অক্ষর10 pF এর নিচে10 pF এর উপরে
0
1
1
10
B
C
±0.1 pF
±0.25 pF
-
2
3
100
1000
D
F
±0.5pF
±1.0pF
±1%
4
5
10000
100000
G
H
±2.0pF±2%
±3%
40.01J
K
-±5%
±10%
90.1M-±20%

নিচের উদাহরণ চিত্রটি লক্ষ করি:

উদাহরণঃ কোড \(122 K=12\times100=1200\) pF এর টলারেন্স K = ±10%

সিরামিক ক্যাপাসিটরের কোডঃ:

নিচে একটি নমূনা সিরামিক ক্যাপাসিটর দেখানো হয়েছে এবং কোড পরিচিতি দেখানো হয়েছে। কোডগুলির পরিচয় জেনে নিন-

ক্যাপাসিট্যান্সের মান নির্ধারণী টেবিল:

গুণকটলারেন্স
সংখ্যাগুণকের মানবর্ণ/অক্ষর10 pF এর নিচে10 pF এর উপরে
0
1
1
10
B
C
±0.1 pF
±0.25 pF
-
2
3
100
1000
D
F
±0.5pF
±1.0pF
±1%
4
5
10000
100000
G
H
±2.0pF±2%
±3%
40.01J
K
-±5%
±10%
90.1M-±20%

উদাহরণঃ 104J = 10 \(\times\) 10000 = 100000 pF টলারেন্স = ±5%

স্ট্যান্ডার্ড মানসমূহ:

ইলেকট্রনিক ইন্ডাসট্রিজ এলিয়েন্স (Electronic Industries Alliance, EIA) যা ১৯৯৭ সালের পূর্বে ইলেকট্রনিক ইন্ডাসট্রিজ এসোসিয়েশন (Electronic Industries Association) নামে পরিচিত ছিল। ইহা আমেরিকায় অবস্থিত ইলেকট্রনিক ম্যানুফ্যাকচারিং প্রতিষ্ঠানসমূহের একটি ট্রেড এসোসিয়েশন যা বিভিন্ন ম্যানুফ্যাকচারিং প্রতিষ্ঠানে উৎপাদিত ইলেকট্রনিক পণ্যের বিভিন্ন স্ট্যান্ডার্ড নির্ধারন ও গুনগত মান যাচাই করে। EIA কর্তৃক নির্ধারিত ক্যাপাসিটরের স্ট্যান্ডার্ড মান ও কোডসমূহ নিম্নরূপ যা সর্বদা বাজারে পাওয়া যায়।

EIA Capacitance Code:

EIA CodeμFpFnFEIA CodeμFpFnF
0R50.530030
1R0133033
1R21.236036
1R51.539039
1R81.843043
2R02.047047
2R22.251051
2R72.756056
3R03.062062
3R33.368068
3R93.975075
4R04.082082
4R74.791091
5R05.0101100
5R65.6111110
6R06.0121120
6R86.8131130
7R07.0151150
8R08.0161160
8R28.2181180
9R09.0201200
10010221220
11011241240
12012271270
13013301300
15015331330
16016361360
18018391390
20020431430
22022471470
24024511510
27027561560
6216201040.1100000100
6816801240.12120000120
7517501540.15150000150
8218201840.18180000180
9119102240.22220000220
1020.001100014740.47100000470
1120.001111001.1105110000001000
1220.001212001.26820.0068306.8
1320.001313001.38220.0082308.2
1520.001515001.51030.013010
1620.001616001.61530.0153015
1820.001818001.81830.0183018
2020.002200022230.0223022
2220.002222002.22730.0273027
2420.002424002.43330.0333033
2720.002727002.73930.0393039
3320.003333003.34730.0473047
3920.003939003.95630.0563056
4720.004747004.76830.0683068
5620.005656005.6----

সমবায়:

অনেক সময় বাজারে কাংখিত মানের ক্যাপাসিটর পাওয়া যায় না। তখন একাধিক ক্যাপাসিটর সমবায়ের মাধ্যমে কাংখিত মান তৈরী করে ব্যবহার করা যায়। যেমনঃ দুটি ১০ মাইক্রোফ্যারাড ক্যাপাসিটর শ্রেনী সমবায়ের মাধ্যমে ৫ মাইক্রোফ্যারাড সৃষ্টি করা যায়। আবার ২ টি ১০ মাইক্রোফ্যরাড ক্যাপাসিটর সমান্তরাল সমবায়ের মাধ্যমে ২০ মাইক্রোফ্যারাড সৃষ্টি করা যায়। সমবায়ের মান নিম্নের সূত্রের মাধ্যমে নির্ধারিত হয়ঃ

সমান্তরাল সমবায়ের ক্ষেত্রে:

C eq = C 1 + C 2 + C 3 + ...............   + C n

শ্রেনী সমবায়ের ক্ষেত্রে:

1 C eq = 1 C 1 + 1 C 2 + 1 C 3 + ...............   + 1 C n

ত্রুটিপূর্ণ ক্যাপাসিটর যাচাইকরণ:

একটি ক্যাপাসিটর বিভিন্নভাবে ত্রুটিযুক্ত হতে পারে। যেমন ডাইইলেকট্রিক পদার্থ শর্ট থাকা কিংবা ওপেন থাকা, ক্যাপাসিটরটি রেটেড মানের চেয়ে কম বা বেশী হওয়া। যাই হোক ডাইলেকট্রিক পদার্থের শর্ট এবং ওপেন অবস্থাকে একটি এনালগ AVO মিটারের সাহায্যে নির্নয় সুবিধাজনক, আর ক্যাপাসিটরটি সঠিক মানে আছে কি-না তা ডিজিটাল মাল্টিমিটারের সাহায্যে নির্নয় সুবিধাজনক।

এনালগ AVO মিটারটি ওহমিক রেঞ্জে নির্বাচন করতে হবে। উচ্চ ক্যাপাসিট্যান্সের ক্ষেত্রে মিটারকে লোয়ার রেজিস্ট্যান্স স্কেলে (১০ কিলো ওহম হতে ১ মেগাওহম) নির্বাচন করতে হবে এবং নিম্ন ক্যাপাসিটেন্সের ক্ষেত্রে মিটারকে উচ্চ রেজিস্ট্যান্স স্কেলে (১ মেগা ওহম হতে ১০০ মেগা ওহম) নির্ধারণ করতে হবে। এরপর মিটারের প্রোব দুটি ক্যাপাসিটরের দুই প্রান্তের সাথে যুক্ত করলে মিটারের কাটাটি খুব দ্রুত নিম্ন রেজিস্ট্যান্স অঞ্চলে বিক্ষেপিত হবে এর পর ধীরে ধীরে উচ্চ রেজিস্ট্যান্স অঞ্চলের দিকে ফিরে আসেতে থাকবে এবং এক সময় অসীম রেজিস্ট্যান্সের কাছাকাছি চলে আসবে। এটাই হলো ভালো ক্যাপাসিটরের বৈশিষ্ট, তবে যদি কাটাটি না নেমে কোথাও দাড়িয়ে যায় বা স্থির রেজিস্ট্যান্স দেখায় তাহলে বুঝতে হবে ক্যাপাসিটরের ডাইইলেকট্রিক পদার্থটি ক্ষতিগ্রস্থ হয়েছে। যদি মিটারের কাটাটি কখনোই বিক্ষেপিত না হয় তাহলে বুঝতে হবে ক্যাপাসিটরটি ওপেন রয়েছে। উল্লেখ্য যে ক্যাপসিটরটি পরীক্ষার পূর্বে অবশ্যই সম্পূর্ণ ডিসচার্জ করে নিতে হবে।

অনেক সময় বাতাসের আর্দ্রতা এবং তাপমাত্রার কারনে অথবা দীর্ঘ দিন ব্যবহারের ফলে ক্যাপাসিটরের ক্যাপাসিট্যান্স পরিবর্তন হতে পারে বা ক্যাপাসিটরের গায়ে লেখা মান হতে বিচ্যূত হতে পারে। তাই ক্যাপাসিটর ব্যবহারের পূর্বে এর মান পরিমাপ করে নেয়া ভাল। ক্যাপাসিট্যান্স পরিমাপের জন্য আধুনিক ডিজিটাল মাল্টিমিটারগুলিতে সুবিধা দেয়া থাকে। ডিজিটাল মাল্টমিটারের সিলেক্টর নবটি ক্যাপাসিট্যান্স স্কেলে রেখে ক্যাপাসিটরকে প্রোব দুটির সাথে যোগ করলেই মিটারে মান প্রদর্শিত হয়।

ব্যবহার:

  1. পাওয়ার স্টেশনে পাওয়ার ফ্যাকটর কারেকশনে ব্যবহৃত হয়
  2. যে কোন ইলেকট্রনিক সার্কিটে ট্রানজিয়েন্ট ফেনোমেনা প্রতিরোধে
  3. পালসেটিং ডিসিকে ফিল্টারিং করে রিপল কমানের জন্য ব্যবহৃত হয়
  4. হাই-পাস, লো-পাস ফিল্টার ইত্যাদি সার্কিটে
  5. ক্লাম্পার সার্কিটে
  6. RC কাপলিং সার্কিটে
  7. টাইম ডিলে সার্কিটে ব্যবহার করা যায়
  8. বেতার যন্ত্রের টিউন্ড সার্কিটে (LC Tank circuit)
  9. সিঙ্গেল ফেজ ইন্ডাকশন মোটরে (বাড়ীতে ব্যবহৃত সিলিং ফ্যান) দুই কয়েলের মধ্যে ফেজ ডিফারেন্স সৃষ্টিতে।

পিসিবিতে সংযোজনের পদ্ধতি:

অধিকাংশ প্রিন্টেড সার্কিট বোর্ডে ক্যাপাসিটরকে প্রকাশ করার জন্য নিম্নের চিহৃসমূহ ব্যবহার হয়:

[চিত্র-ক] তে একটি গোলাকার বৃত্তের মধ্যে + ও – চিহ্নিত প্রতীকের + ছিদ্রে ক্যাপাসিটরের ধণাত্বক টার্মিনাল এবং – ছিদ্রে ক্যাপাসিটরের ঋণাত্বক টার্মিনাল সংযোজন করা হয়। [চিত্র-খ] তে বাকা প্লেট চিহ্নিত টার্মিনালটি ঋণাত্বক টার্মিনাল হিসাবে উপস্থাপিত, এই টর্মিনালের সাথে সংযুক্ত ছিদ্রে ঋণাত্বক টার্মিনাল সংযোগ করা হয়। [চিত্র-গ] দ্বারা নন পোলার ক্যাপাসিটর বুঝায় তাই সংযোগের সময় পোলারিটি বিবেচনার প্রয়োজন নেই। [চিত্র-ঘ] তে সাদা রং করা অংশে অবস্থিত ছিদ্রটি ঋণাত্বক টার্মিনালের জন্য নির্ধারিত, এই ছিদ্রে ক্যাপাসিটরের ঋণাত্বক টার্মিনাল সংযোগ করতে হয়।

সতর্কতা:

  1. অনেক সময় ক্যাপাসিটর ত্রটিপূর্ণ থাকে যেমন আভ্যন্তরীন ইলেকট্রোডগুলি শর্ট থাকে কিংবা ওপেন থাকে তাই সার্কটে সংযোজনের পূর্বে ক্যাপাসিটরগুলি অবশ্যই পরীক্ষা করে নিতে হবে।
  2. ক্যাপাসিটর পরীক্ষার সময় মিটারের দুই প্রোব দুই হাত দিয়ে ধরা যাবে না শুধু ক্যাপাসিটরের টার্মিনাল দুটিতে মিটারের প্রোব সংযোগ করতে হবে, নতুবা মানব শরীরের ক্যাপাসিট্যান্স যোগ হয়ে ভুল মান আসতে পারে।
  3. সার্কিটে সংযুক্ত ক্যাপাসিটর পরিমাপের সময় যে কোন এক টার্মিনাল খুলে পরিমাপ করতে হবে, নতুবা সার্কিটে সংযুক্ত অন্যান্য উপাদান পাঠের অন্তর্ভূক্ত হয়ে ভুল মান প্রদর্শিত হতে পারে।
  4. পাওয়ার সাপ্লাই ফিল্টারিং করার ক্ষেত্রে অথবা যে কোন পিসিবিতে পোলার ইলেকট্রোলাইটিক ক্যাপাসিটর সংযোগের সময় সর্বদা সঠিক পোলারিটিতে লাগাতে হয় নতুবা ভয়ংকর বিষ্ফোরনের মাধ্যমে বিপদজনক ঘটনা ঘটতে পারে।

সূত্র:

  1. Basic Electronics – Bernard Grob
  2. Wikipedia

***এই পোস্টটি ডাউনলোড করুন এই লিংক থেকে

---------

1 টি মন্তব্য: